Semaphores

· Previous solutions to the Critical Section problem are not easy to generalize to more complex problems
· A Synchronization tool, called Semaphore, can solve the problem
Methodology:

· Two or more processes can cooperate by means of a specific signal, such that a process can be forced to stop at a specified place until it received a signal

· A Semaphore “s” is an integer variable that, apart from initialization, is accesses only through two standard atomic operations, called wait (also called P) and signal (also called V)
type semaphore = record

value : integer

queue : List of Processes

end ;

var s : semaphore

wait (s) {

s.value = s.value – 1 ;

if s.value < 0

then begin

place this process in s.queue ;

block this process ; }

signal (s) {

s.value = s.value + 1 ;

if s.value < = 0 {

remove a process P from s.queue ;

place process P on Ready list ;

}

}
OPERATIONS:

· A semaphore s may be initialized to a non-negative value

· The wait operation decreases semaphore value. If the value becomes negative, then the process executing the wait is placed in the semaphore queue and is blocked

· The signal operation increments the semaphore value. If the value is not positive, then a process earlier blocked by a wait operation is unblocked
Critical Aspect:
wait() => Atomic operation

signal() => Atomic operation

BINARY SEMAPHORE:

type binarySemaphore = record

value: (0..1)

queue: List of processes ;

end

var s : binarySemaphore

waitB(s)
{

If s.value = 1

then s.value = 0

else {

place this process in s.queue ;

Block this process ;

}

signalB(s)

if s.queue is empty {

s.value = 1 ;

else {

Remove a process P from s.queue;

Place process P on Ready List

end ;

}

Mutual Exclusion using Semaphores

program mutualExclusion;

const n = .. ; // Number of Processes

var s : semaphore (:= 1)

procedure P(i := integer)

{
repeat

wait(s) ;

<Critical Section> ;

signal(s) ;

<remainder>

forever ; }

begin

// Main Program

P(1)

// Process 1

 .

 .

P(n)

End

Explanation:

1) Semaphore s is initialized to 1

2) The first process that executes wait(s) will enter its Critical Section immediately, thereby setting s = 0

3) Any other process attempting to enter <CS> will first execute wait(s) and will be blocked, setting s to –1

4) Any number of processes may attempt entry to <CS>; each such unsuccessful attempt results in further decrement of s

5) When the process that initially entered its <CS> departs, it executes signal(s) thereby incrementing s and removing a process from the queue and putting it on the Ready List

Synchronization Problem: Producer-Consumer

· One or more producers generating a data Object (such as a file or a record) and placing these in a buffer

· A single consumer is taking out the items from the buffer one at a time

· The system is to be constrained to prevent overlap of buffer operations (i.e., only one agent, either a producer or a consumer) may access the buffer at any time

1st Case : Buffer Infinite

 out
 in

producer : {

repeat

produce item v ;

b[in] := v ;

// place item in buffer

in := in + 1 ;

forever

}

consumer : {

repeat

while in <= out do {nothing}

w : = b[out];

out := out + 1 ;

consume item w

forever

}

program producerConsumer ;

var n : integer; s: binarySemaphore (:= 1)

delay : binarySemaphore (:= 0);

procedure producer {

repeat

produce ;

waitB(s) ;

append; n : = n + 1 ;

if n = 1 then signalB(delay) ;

signalB(s) ;

forever ; }

procedure consumer {

waitB(delay);

repeat

waitB(s) ;

take item ;
n : = n – 1 ;

signalB(s) ;

consume ;

if n = 0 then waitB(delay)

forever }

Possible Scenario:

Action

n

Delay
1 Initially

0

 0

2 Producer:
<CS>

1

 1

3 Consumer:
waitB(delay)

1

 0

4 Consumer:
<CS>

0

 0

5 Producer:
<CS>

1

 1

6 Consumer:
If n = 0 then

1

 1

waitB(delay)

7 Consumer:
<CS>

0

 1

8 Consumer:
if n = 0 then

waitB(delay)
0

 0

9 Consumer:
<CS>

-1

 0

 Observation:

The value of n = -1 means that the consumer has consumed an item from the buffer that does not exists.

b[1]1]

b[2]1]

b[3]1]

b[4]1]

b[1]1]

